Autor |
Wiadomość |
Stara |
Wysłany: Nie 12:10, 02 Mar 2008 Temat postu: |
|
Adus jestes wielka jak ktos chce w pon. moge wytlumaczyc to co umiem i rozumiem
BaRu napisał: | co do 4 zadania mam inaczej, co prawda nie miałem ze szponem i za pierwszym razem zaliczyłem, więc może się zmieniły pytania. W razie co sorki za zamieszanie.
ZADANIE--4
X=linspace(-4,6);
ybis=16-4*X-4*X.^2+X.^3;
xbis=X-2;
plot2d(X,ybis);
plot2d(X,xbis);
xtitle("krzywe..."); |
no dobra ale to pół zadania jest trzeba jeszcze obliczyc punkty prezciecia, powyzej w postach jest moja matematyczna forumuła liczenia tych przeciec kombinuje nadal nad pętlą. |
|
|
Aduś:) |
Wysłany: Nie 11:58, 02 Mar 2008 Temat postu: |
|
a Oto i rozwiązanie zadania 3(przepraszam ze dopiero dzisiaj to wstawiłam ale niedawno zaczełam to robić)
a(1,1)=1; wartosc na miejscu 1,1
a(20,20)=1; wartosc na miejscu 20,20 w macierzy
b(1)=0.0; pierwsza wartosc wyrazow wolnych
b(20)=3.8; ostatnia wartosc wyrazów wolnych
for i=2:19 to zeby podac wartosci pom przekątnej
a(i,i)=-2;
a(i,i-1)=1; wartosci pod przekątną
a(i,i+1)=1; wartosci nad przekątną
b(i)=b(i+1)+0.2; wyrazy wolne są co 0.2 wiec do kazdego nastepnego dodajemy 0.2
x(i)=b\a; obliczenie niewiadomych wektor wyrazów wolnych przez daną macierz
plot(x) wyświetlenie wykresu
Mam nadzieję, że zrozumiecie bo ja tłumaczyc nie potrafię;p
pozdrawiam:) |
|
|
BaRu |
Wysłany: Czw 20:36, 28 Lut 2008 Temat postu: |
|
co do 4 zadania mam inaczej, co prawda nie miałem ze szponem i za pierwszym razem zaliczyłem, więc może się zmieniły pytania. W razie co sorki za zamieszanie.
ZADANIE--4
X=linspace(-4,6);
ybis=16-4*X-4*X.^2+X.^3;
xbis=X-2;
plot2d(X,ybis);
plot2d(X,xbis);
xtitle("krzywe..."); |
|
|
Deathscythe |
Wysłany: Pon 18:34, 25 Lut 2008 Temat postu: |
|
aha ... ok trza ustalic jakos termin ale moze po wodolejstwie ?? |
|
|
Stara |
Wysłany: Pon 16:18, 25 Lut 2008 Temat postu: |
|
znaczy tak ludzie od szpona niech miedzy soba jakis termin cos ustala i jak cos ja mu meilem napisze a on odp. czy mu odpowiada a Ci co maja szanse na stype naukowa to jutro miedzy 14-16 u niego albo w sekretariacie tam na przeciwko jego drzwi moga zaliczac |
|
|
Deathscythe |
Wysłany: Nie 17:40, 24 Lut 2008 Temat postu: |
|
a kiedy ta ostateczna poprawa ?? |
|
|
Stara |
Wysłany: Nie 16:16, 24 Lut 2008 Temat postu: |
|
dokładnie to szpon sie nie określił powiedzial ze bedzie jedno z tych trzech 3,4 i 10
jak ktos ma 3 zrobione w inny sposob niz to ktrore krazy to chetnie przyjme i wytlumacze |
|
|
antek |
Wysłany: Sob 21:47, 23 Lut 2008 Temat postu: |
|
zasadnicze pytanie jedno zadanie wystrczy napisac??;> no i kiedy to piszemy? |
|
|
Stara |
Wysłany: Sob 19:59, 23 Lut 2008 Temat postu: |
|
zadania u szpona na nastepnych zaliczeniach to zad 3, 4 i 10
Zad4
xbasc() // wyczyszczenie okna graficznego
x=linspace(-25, 25, 100) // zdefiniowanie x'ów
// funkcja 1
yA = 42 - 20*x - 2*x^2
plot2d(x, y1) // wykreślenie funkcji 1
//wykreślenie funkcji 2
yB = 7 - 2*x
plot2d(x, y2)
//yA=yB < tu przyrównujemy funkcje w celu wyznaczenia punktów przecięcia obu funckije, tak sie to robi matematycznie.
//42 - 20*x - 2*x^2=7 - 2*x
yC=-18*x-2*x^2+35
//liczymy delte poniżej wypisane sa a1, b1 i c1 dla wzoru ogólnego na obliczanie delty czyli delta=b^2-4ac
a1=-2
b1=-18
c1=35
delta1 = b1^2 - 4*a1*c1
//ponizej znajduje sie polecenie "drukujace" w oknie głównym scilaba wyniki obliczeń.
printf("delta = %f\n", delta1)
// obliczenie 1 punktu przecięcia
x1 = (18 - sqrt(delta1)) / (2 * a1)
// obliczenie 2 punktu przecięcia
x2 = (18 + sqrt(delta1)) / (2 * a1)
// obliczenie y'ów
y1=-18*x1-2*x1^2+35
y2=-18*x2-2*x2^2+35
co do zadania 3ciego to jest to matematyczny sposób spróbuje zrobić z tego jakąś pętle ale nie wiem czy mi się uda… najwyzej bedziem ściemniać mu cos….
zad 10
N=20;
q=4; //ilość liczb
Vk=1:20;
Vw=1:q;
for i=1:q
x=grand(1,1,'uin',1,N-i); //losowanie numeru elementu to polecenie losuje nam liczby zwrócicie uwage ze jest „N-i” czyli od ilości liczb zdefiniowanej na początku jako N odejmujemy i czyli to co w naszej pętli sobie szukamy
Vw(i)=Vk(x); //przerzucanie elementu czyli po prostu z wektora Vw określającego roziazania przezucamy sobie wyniki do wektora Vk zależnego od x a zwroccie uwage ze x jest równy temu losowaniu
Vk(x)=[];//usuwanie elementu tego do konca nie wiem czemu tak ale musi najwyraźniej tak być….
end;
Vw //tu jak wpisujemy Vw to nam na koncu napisze te liczby
No i prośba do Ady kochana Ado przypomnij sobie jak zrobilas zadanie 3 i wklej je a jaje objaśnie jak się dorwe do netu jak bys wkleiła to wyslij smsa ;] a jak nie to sama pogłowie się nad tym ;]
Acha i zal. Dla tych co maja szanse na stype jakos w poniedziałek będzie.szpon się umawiał na 11 ale nappisze mu maila ze na 13 ma być…
Sory ze tak w biegu te zadania ale wichura mi kable porwała i nie mam netu w domu wiec kątem u znajomej korzystam ;] |
|
|
fordonutp |
Wysłany: Pon 18:59, 18 Lut 2008 Temat postu: |
|
wiem ze czesc ludzi juz to miala i zglaszala zastrzezenia odnosnie poszczegolnych zadan ale lepsze to niz nic.a z tego da sie wybrnac "ogromna" reka
fucking fight untill die dobre |
|
|
fordonutp |
Wysłany: Pon 18:58, 18 Lut 2008 Temat postu: |
|
9
//zadanie 9 - całkowanie metodą prostokątów
//kodowanie: UTF-8
//-------- część do ustawienia --------
function y=f(x) //funkcja podcałkowa
y=2*x^2-3;
endfunction
a=1; //dolna granica całkowania
b=5; //gorna granica całkowania
n=20; //liczba przedziałow
//-----koniec części do ustawienia ----
w=abs(b-a)/n; //szerokość skrawka
S=0; //początkowa suma
for i=a:w:b
S=S+f(i)*w; //sumowanie prostokątów
end
printf("Pole pod wykresem wynosi %f\n",S); |
|
|
fordonutp |
Wysłany: Pon 18:57, 18 Lut 2008 Temat postu: |
|
8
//pole pod okręgiem danym parametrycznie
//wzory na podstawie http://mathworld.wolfram.com/CircularSegment.html
function x=x(t) //pierwsze równanie parametryczne
x=2*cos(t)+3
endfunction
function y=y(t) //drugie równanie parametryczne
y=2*sin(t)+1
endfunction
t1=0; //minimalny parametr
t2=2*%pi; //maksymalny parametr
//koniec danych z zadania
//-------------------------------------------
ymin=y(1.5*%pi); //"dołek" okręgu
ymax=y(0.5*%pi); //"góra" okręgu
R=abs(ymax-ymin)/2; //promień okręgu
d=0.000000000001; // precyzja
//szukanie pierwszego przecięcia z osią OX metodą bisekcji
a=0; //początek przeszukiwanego przedziału
b=1.5*%pi; //koniec przeszukiwanego przedziału
while (abs(a-b)>d)
t0a=(a+b)/2;
if (y(a)*y(t0a)<0) then
b=t0a; else a=t0a; end
end
//szukanie drugiego przecięcia z osią OX metodą bisekcji
a=1.5*%pi; //początek przeszukiwanego przedziału
b=t2; //koniec przeszukiwanego przedziału
while (abs(a-b)>d)
t0b=(a+b)/2;
if (y(a)*y(t0b)<0) then
b=t0b; else a=t0b; end
end
// ! ! ! TU SIĘ DZIEJE CAŁA MAGIA ! ! !
// czytać linka z drugiej linii
c=abs(x(t0a)-x(t0b)); //długość cięciwy
alpha=2/sin(0.5*c/R); //kąt między promieniami przecinającymi oś OX
S=0.5*R^2*(alpha-sin(alpha)); //pole powierzchni pod osią OX
// ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
printf("Pole wynosi %f\n",S); |
|
|
fordonutp |
Wysłany: Pon 18:57, 18 Lut 2008 Temat postu: |
|
7
n=6; //wymiar macierzy - potrzebny do ładnego drukowania
A=[5 3 1 0 0 0; //macierz główna
1 1 0 0 -3 -8;
2 0 1 -1 -5 1;
0 -1 -3 0 -5 -3;
0 1 -3 0 -1 +5;
-2 0 0 0 0 7];
B=[7 -5 0 -5 0 5]; //macierz wyrazów wolnych
X=(A^(-1)*B')'; //macierz rozwiązań
E=(A*X')-B'; //macierz błędów
printf("Rozwiązanie\n");
for i=1:1:n
printf("x%d=%f Błąd: xe1=%.20f\n",i,X(i),E(i));
end |
|
|
fordonutp |
Wysłany: Pon 18:57, 18 Lut 2008 Temat postu: |
|
5 custom
n=10; //ilość liczb do wylosowania
for i=1:1:n
Va(i)=round(rand()*20)-10;
//rand zwraca liczbę od 0 do 1, trzeba przemnożyć przez 20
//żeby uzyskać amplitudę 20 (od 0 do 20) i odjąć 10 żeby
//przesunąć wszystko do przedziału od -10 do 10
if (Va(i)>=2) then
Vb(i)="T";
else
Vb(i)="F";
end
end
Vb' |
|
|
fordonutp |
Wysłany: Pon 18:56, 18 Lut 2008 Temat postu: |
|
5b
n=10; //ilość liczb do wylosowania
Va=grand(1,n,'uin',-10,10)
Vb=Va>2 |
|
|